Mathematics – Complex Variables
Scientific paper
2005-10-12
Mathematics
Complex Variables
10 pages
Scientific paper
We study fixed point sets for holomorphic automorphisms (and endomorphisms) on complex manifolds. The main object of our interest is to determine the number and configuration of fixed points that forces an automorphism (endomorphism) to be the identity. These questions have been examined in a number of papers for a bounded domain in ${\Bbb C}^n$. Here we resolve the case for a general finite dimensional hyperbolic manifold. We also show that the results for non-hyperbolic manifolds are notably different.
Fridman Buma L.
Ma Daowei
Vigue Jean-Pierre
No associations
LandOfFree
Fixed points and Determining Sets for Holomorphic Self-Maps of a Hyperbolic Manifold does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fixed points and Determining Sets for Holomorphic Self-Maps of a Hyperbolic Manifold, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fixed points and Determining Sets for Holomorphic Self-Maps of a Hyperbolic Manifold will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-686220