Computer Science – Information Theory
Scientific paper
2010-03-15
Computer Science
Information Theory
6 pages, 6 pdf figures; invited paper to appear in CISS 2010
Scientific paper
This paper describes a low-complexity approach for reconstructing average packet arrival rates and instantaneous packet counts at a router in a communication network, where the arrivals of packets in each flow follow a Poisson process. Assuming that the rate vector of this Poisson process is sparse or approximately sparse, the goal is to maintain a compressed summary of the process sample paths using a small number of counters, such that at any time it is possible to reconstruct both the total number of packets in each flow and the underlying rate vector. We show that these tasks can be accomplished efficiently and accurately using compressed sensing with expander graphs. In particular, the compressive counts are a linear transformation of the underlying counting process by the adjacency matrix of an unbalanced expander. Such a matrix is binary and sparse, which allows for efficient incrementing when new packets arrive. We describe, analyze, and compare two methods that can be used to estimate both the current vector of total packet counts and the underlying vector of arrival rates.
Calderbank Robert
Jafarpour Sina
Raginsky Maxim
Willett Rebecca
No associations
LandOfFree
Fishing in Poisson streams: focusing on the whales, ignoring the minnows does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fishing in Poisson streams: focusing on the whales, ignoring the minnows, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fishing in Poisson streams: focusing on the whales, ignoring the minnows will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-213822