Finiteness of p-Divisible Sets of Multiple Harmonic Sums

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

19 pages, some typos are corrected

Scientific paper

\medskip\noindent\textbf{R\'esum\'e.} Soit $l$ un entier et $\ors=(s_1, \dots, s_l)$ une s\'equence d'entiers positifs. Dans ce document, nous \'etudierons les propri\'et\'es arithm\'etique de sommes harmoniques multiples $H(\ors; n)$, qui est le $n$-\`eme somme partielle de la valeur de la s\'erie multiple zeta $\zeta(\ors)$. On conjecture que pour tout $\ors$ et de tous les premiers $p$, il n'y a que de nombreux finitely $p$-partie int\'egrante sommes $H(\ors,n)$. Ceci g\'en\'eralise une conjecture de Eswarathasan et Levine et Boyd pour la s\'erie harmonique. Nous fournissons beaucoup d'\'el\'ements de preuve pour cette conjecture g\'en\'erale ainsi que certaines heuristiques argument soutenir. Ce document fait suite \`a \emph{Wolstenholme Type Theorem for multiple harmonic sums}, Intl.\ J.\ of Number Theory \textbf{4}(1) (2008) 73-106.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Finiteness of p-Divisible Sets of Multiple Harmonic Sums does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Finiteness of p-Divisible Sets of Multiple Harmonic Sums, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finiteness of p-Divisible Sets of Multiple Harmonic Sums will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-479071

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.