Computer Science – Artificial Intelligence
Scientific paper
2009-10-12
Computer Science
Artificial Intelligence
Accepted for the Proceedings of the International Modal Analysis Conference 2010
Scientific paper
This paper proposes the application of particle swarm optimization (PSO) to the problem of finite element model (FEM) selection. This problem arises when a choice of the best model for a system has to be made from set of competing models, each developed a priori from engineering judgment. PSO is a population-based stochastic search algorithm inspired by the behaviour of biological entities in nature when they are foraging for resources. Each potentially correct model is represented as a particle that exhibits both individualistic and group behaviour. Each particle moves within the model search space looking for the best solution by updating the parameters values that define it. The most important step in the particle swarm algorithm is the method of representing models which should take into account the number, location and variables of parameters to be updated. One example structural system is used to show the applicability of PSO in finding an optimal FEM. An optimal model is defined as the model that has the least number of updated parameters and has the smallest parameter variable variation from the mean material properties. Two different objective functions are used to compare performance of the PSO algorithm.
Adhikari Sondipon
Friswell Michael I.
Marwala** Tshilidzi
Mthembu Linda
No associations
LandOfFree
Finite element model selection using Particle Swarm Optimization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Finite element model selection using Particle Swarm Optimization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finite element model selection using Particle Swarm Optimization will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-464909