Mathematics – Number Theory
Scientific paper
1998-03-23
Mathematics
Number Theory
Scientific paper
We discuss the following conjecture of Kitaoka: if a finite subgroup $G$ of $GL_{n}(O_{K})$ is invariant under the action of $Gal(K/\Bbb Q)$ then it is contained in $GL_{n}(K^{ab})$. Here $O_{K}$ is the ring of integers in a finite, Galois extension $K$ of $\Bbb Q$ and $K^{ab}$ is the maximal, abelian subextension of $K$. Our main result reduces this conjecture to a special case of elementary abelian $p-$groups $G$. Also, we construct some new examples which negatively answer a question of Kitaoka.
Mazur Marcin
No associations
LandOfFree
Finite arithmetic subgroups of GL_n does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Finite arithmetic subgroups of GL_n, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Finite arithmetic subgroups of GL_n will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-680855