Mathematics – Logic
Scientific paper
Apr 1993
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1993natur.362..834w&link_type=abstract
Nature, Volume 362, Issue 6423, pp. 834-836 (1993).
Mathematics
Logic
33
Scientific paper
NATURAL oxidation of ferrous to ferric iron by bacteria such as Thiobacillus ferrooxidans or Gallionella ferruginea1, or by chemical oxidation2,3 has previously been thought always to involve molecular oxygen as the electron acceptor. Anoxic photochemical reactions4-6 or a photobiological process involving two photosystems7-9 have also been discussed as mechanisms of ferrous iron oxidation. The knowledge of such processes has implications that bear on our understanding of the origin of Precambrian banded iron formations10-14. The reducing power of ferrous iron increases dramatically at pH values higher than 2-3 owing to the formation of ferric hydroxy and oxyhydroxy compounds1,2,15 (Fig. 1). The standard redox potential of Fe3+/Fe2+ (E0 = +0.77 V) is relevant only under acidic conditions. At pH 7.0, the couples Fe(OH)3/Fe2+ (E'0 = -0.236V) or Fe(OH)3 + HCO-3FeCO3 (E'0 = +0.200 V) prevail, matching redox potentials measured in natural sediments9,16,17. It should thus be possible for Fe(n) around pH 7.0 to function as an electron donor for anoxygenic photosynthesis. The midpoint potential of the reaction centre in purple bacteria is around +0.45 V (ref. 18). Here we describe purple, non-sulphur bacteria that can indeed oxidize colourless Fe(u) to brown Fe(in) and reduce CO2 to cell material, implying that oxygen-independent biological iron oxidation was possible before the evolution of oxygenic photosynthesis.
Assmus Bernhard
Ehrenreich Armin
Heising Silke
Schink Bernhard
Schnell Sylvia
No associations
LandOfFree
Ferrous iron oxidation by anoxygenic phototrophic bacteria does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ferrous iron oxidation by anoxygenic phototrophic bacteria, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ferrous iron oxidation by anoxygenic phototrophic bacteria will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1373837