Nonlinear Sciences – Exactly Solvable and Integrable Systems
Scientific paper
2005-06-20
Nucl.Phys.B727:564-586,2005
Nonlinear Sciences
Exactly Solvable and Integrable Systems
26 pages, LaTeX, the extended version of nlin.SI/0505039
Scientific paper
10.1016/j.nuclphysb.2005.08.035
By exhibiting the corresponding Lax pair representations we propose a wide class of integrable two-dimensional (2D) fermionic Toda lattice (TL) hierarchies which includes the 2D N=(2|2) and N=(0|2) supersymmetric TL hierarchies as particular cases. Performing their reduction to the one-dimensional case by imposing suitable constraints we derive the corresponding 1D fermionic TL hierarchies. We develop the generalized graded R-matrix formalism using the generalized graded bracket on the space of graded operators with an involution generalizing the graded commutator in superalgebras, which allows one to describe these hierarchies in the framework of the Hamiltonian formalism and construct their first two Hamiltonian structures. The first Hamiltonian structure is obtained for both bosonic and fermionic Lax operators while the second Hamiltonian structure is established for bosonic Lax operators only. We propose the graded modified Yang-Baxter equation in the operator form and demonstrate that for the class of graded antisymmetric R-matrices it is equivalent to the tensor form of the graded classical Yang-Baxter equation.
Gribanov Vladimir
Kadyshevsky V. G.
Sorin Alexander S.
No associations
LandOfFree
Fermionic one- and two-dimensional Toda lattice hierarchies and their bi-Hamiltonian structures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fermionic one- and two-dimensional Toda lattice hierarchies and their bi-Hamiltonian structures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fermionic one- and two-dimensional Toda lattice hierarchies and their bi-Hamiltonian structures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-104302