Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics
Scientific paper
2011-09-14
Astronomy and Astrophysics
Astrophysics
Cosmology and Extragalactic Astrophysics
33 pages (plus appendices), 3 figures. V2: references added, some minor clarifications. Accepted for publication in JCAP
Scientific paper
Primordial non-Gaussianity is generated by interactions of the inflaton field, either self-interactions or couplings to other sectors. These two physically different mechanisms can lead to nearly indistinguishable bispectra of the equilateral type, but generate distinct patterns in the relative scaling of higher order moments. We illustrate these classes in a simple effective field theory framework where the flatness of the inflaton potential is protected by a softly broken shift symmetry. Since the distinctive difference between the two classes of interactions is the scaling of the moments, we investigate the implications for observables that depend on the series of moments. We obtain analytic expressions for the Minkowski functionals and the halo mass function for an arbitrary structure of moments, and use these to demonstrate how different classes of interactions might be distinguished observationally. Our analysis casts light on a number of theoretical issues, in particular we clarify the difference between the physics that keeps the distribution of fluctuations nearly Gaussian, and the physics that keeps the calculation under control.
Barnaby Neil
Shandera Sarah
No associations
LandOfFree
Feeding your Inflaton: Non-Gaussian Signatures of Interaction Structure does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Feeding your Inflaton: Non-Gaussian Signatures of Interaction Structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Feeding your Inflaton: Non-Gaussian Signatures of Interaction Structure will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-568786