Mathematics – Numerical Analysis
Scientific paper
2010-06-30
Mathematics
Numerical Analysis
23 pages, 4 figures, 4 tables; added arxiv links to references, added coments
Scientific paper
The elliptic Monge-Ampere equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail. In this article we build a finite difference solver for the Monge-Ampere equation, which converges even for singular solutions. Regularity results are used to select a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton's method. Computational results in two and three dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities.
Froese Brittany D.
Oberman Adam M.
No associations
LandOfFree
Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-153389