Astronomy and Astrophysics – Astrophysics
Scientific paper
Oct 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008a%26a...490..339b&link_type=abstract
Astronomy and Astrophysics, Volume 490, Issue 1, 2008, pp.339-344
Astronomy and Astrophysics
Astrophysics
3
Sun: Radio Radiation, Sun: Corona, Sun: Particle Emission, Methods: Numerical
Scientific paper
Aims: Decameter radio observations of the solar corona reveal the presence of numerous faint frequency drifting emissions, similar to “solar S bursts” which are reported in the literature. We present a statistical analysis of the characteristics of these emissions and propose a mechanism to excite the Langmuir waves thought to be at the origin of these emissions. Methods: The observations were performed between 1998 and 2002 with the Digital Spectro Polarimeter (DSP) receivers operated at the UTR-2 and Nançay decameter radio telescopes in the frequency range 15-30 MHz. Our theoretical explanation is based on Vlasov-Ampère simulations. Results: Based on the frequency drift rate, three populations of structures can be identified. The largest population presents an average negative frequency drift of -0.9 MHz s-1 and a lifetime up to 11 s (median value of 2.72 s). A second population shows a very small frequency drift of -0.1 MHz s-1 and a short lifetime of about 1 s. The third population presents an average positive frequency drift of +0.95 MHz s-1 and a lifetime of up to 3 s. Also, the frequency drift as a function of frequency is consistent with the former results, which present results in higher frequency range. No specific relationship was found between the occurrence of these emissions and the solar cycle or presence of flares. Assuming that these emissions are produced by “electron clouds” propagating the solar corona, we deduce electron velocities of about 3-5 times the electron thermal velocity. As previously shown, a localized, time-dependent modulation of the electron distribution function (heating) leads to low velocity electron clouds (consistent with observations), which, in turn, can generate Langmuir waves and electromagnetic signals by nonlinear processes.
Abranin Edward P.
Briand Carine
Dorovsky V. V.
Konovalenko Aleksander
Lecacheux Alain
No associations
LandOfFree
Faint solar radio structures from decametric observations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Faint solar radio structures from decametric observations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Faint solar radio structures from decametric observations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1661806