Mathematics – Combinatorics
Scientific paper
2011-01-25
Mathematics
Combinatorics
Swith some notations into ones which are more popular and put the materials of Appendix into the body. The present version is
Scientific paper
Let $G$ be a finite abelian group. The critical number ${\rm cr}(G)$ of $G$ is the least positive integer $\ell$ such that every subset $A\subseteq G\setminus\{0\}$ of cardinality at least $\ell$ spans $G$, i.e., every element of $G$ can be written as a nonempty sum of distinct elements of $A$. The exact values of the critical number have been completely determined recently for all finite abelian groups. The structure of these sets of cardinality ${\rm cr}(G)-1$ which fail to span $G$ has also been characterized except for the case that $|G|$ is an even number and the case that $|G|=pq$ with $p,q$ are primes. In this paper, we characterize these extremal subsets for $|G|\geq 36$ is an even number, or $|G|=pq$ with $p,q$ are primes and $q\geq 2p+3$.
Guo Dan
Qu Yongke
Wang Guoqing
Wang Qinghong
No associations
LandOfFree
Extremal incomplete sets in finite abelian groups does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Extremal incomplete sets in finite abelian groups, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extremal incomplete sets in finite abelian groups will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-541614