Mathematics – Probability
Scientific paper
2012-01-31
Mathematics
Probability
20 pages
Scientific paper
In this paper, we study a distylous flower population in which self-reproduction is not permitted. Individuals are diploid, and two alleles, A and a, can be found at the considered locus S. Pollen and ovules of flowers with the same genotype at locus S cannot mate. This prevents the pollen of a given flower to fecundate its stigmates. Only genotypes AA and Aa can be maintained in the population, so that the latter can be described by a random walk in the positive quadrant whose components are the number of individuals of each genotype. This random walk is not homogeneous and its transitions depend on the location of the process. We are interested in the computation of the extinction probabilities, where extinction happens when one of the axis is reached by the process. These extinction probabilities, which depend on the initial condition, satisfy a doubly-indexed recurrence equation that cannot be solved directly. We consider the associated generating function and show that it satisfies a partial differential equation that is solved but whose solution is explicit, though hardly tractable. Numerical results comparing stochastic and deterministic approximations of the extinction probabilities are studied.
Lafitte-Godillon Pauline
Raschel Kilian
Tran Viet Chi
No associations
LandOfFree
Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extinction probabilities for a distylous plant population modeled by an inhomogeneous random walk on the positive quadrant will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-56549