Extension of Operators from Weak$^*$-closed Subspaces of $\ell_1$

Mathematics – Functional Analysis

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

It is proved that every operator from a weak$^*$-closed subspace of $\ell_1$
into a space $C(K)$ of continuous functions on a compact Hausdorff space $K$
can be extended to an operator from $\ell_1$ to $C(K)$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Extension of Operators from Weak$^*$-closed Subspaces of $\ell_1$ does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Extension of Operators from Weak$^*$-closed Subspaces of $\ell_1$, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Extension of Operators from Weak$^*$-closed Subspaces of $\ell_1$ will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-498827

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.