Exponentiation and Euler measure

Mathematics – Combinatorics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

15 pages; to appear in Algebra Universalis

Scientific paper

Two of the pillars of combinatorics are the notion of choosing an arbitrary subset of a set with $n$ elements (which can be done in $2^n$ ways), and the notion of choosing a $k$-element subset of a set with $n$ elements (which can be done in $n \choose k$ ways). In this article I sketch the beginnings of a theory that would import these notions into the category of hedral sets in the sense of Morelli and the category of polyhedral sets in the sense of Schanuel. Both of these theories can be viewed as extensions of the theory of finite sets and mappings between finite sets, with the concept of cardinality being replaced by the more general notion of Euler measure (sometimes called combinatorial Euler characteristic). I prove a ``functoriality'' theorem (Theorem 1) for subset-selection in the context of polyhedral sets, which provides quasi-combinatorial interpretations of assertions such as $2^{-1} = \frac12$ and ${1/2 \choose 2} = -\frac18$. Furthermore, the operation of forming a power set can be viewed as a special case of the operation of forming the set of all mappings from one set to another; I conclude the article with a polyhedral analogue of the set of all mappings between two finite sets, and a restrictive but suggestive result (Theorem 2) that offers a hint of what a general theory of exponentiation in the polyhedral category might look like.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Exponentiation and Euler measure does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Exponentiation and Euler measure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exponentiation and Euler measure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-412943

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.