Mathematics – Dynamical Systems
Scientific paper
2011-07-29
Mathematics
Dynamical Systems
Scientific paper
In this paper we study the splitting of separatrices phenomenon which arises when one considers a Hamiltonian System of one degree of freedom with a fast periodic or quasiperiodic and meromorphic in the state variables perturbation. The obtained results are different from the previous ones in the literature, which mainly assume algebraic or trigonometric polynomial dependence on the state variables. As a model, we consider the pendulum equation with several meromorphic perturbations and we show the sensitivity of the size of the splitting on the width of the analyticity strip of the perturbation with respect to the state variables. We show that the size of the splitting is exponentially small if the strip of analyticity is wide enough. Furthermore, we see that the splitting grows as the width of the analyticity strip shrinks, even becoming non-exponentially small for very narrow strips. Our results prevent from using polynomial truncations of the meromorphic perturbation to compute the size of the splitting of separatrices.
Guardia Marcel
Seara Tere M.
No associations
LandOfFree
Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exponentially and non-exponentially small splitting of separatrices for the pendulum with a fast meromorphic perturbation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-319661