Computer Science – Learning
Scientific paper
2009-09-19
Computer Science
Learning
10 pages, to appear in ICDM 2010
Scientific paper
Ensemble learning aims to improve generalization ability by using multiple base learners. It is well-known that to construct a good ensemble, the base learners should be accurate as well as diverse. In this paper, unlabeled data is exploited to facilitate ensemble learning by helping augment the diversity among the base learners. Specifically, a semi-supervised ensemble method named UDEED is proposed. Unlike existing semi-supervised ensemble methods where error-prone pseudo-labels are estimated for unlabeled data to enlarge the labeled data to improve accuracy, UDEED works by maximizing accuracies of base learners on labeled data while maximizing diversity among them on unlabeled data. Experiments show that UDEED can effectively utilize unlabeled data for ensemble learning and is highly competitive to well-established semi-supervised ensemble methods.
Zhang Min-Ling
Zhou Zhi-Hua
No associations
LandOfFree
Exploiting Unlabeled Data to Enhance Ensemble Diversity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Exploiting Unlabeled Data to Enhance Ensemble Diversity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exploiting Unlabeled Data to Enhance Ensemble Diversity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-487143