Statistics – Applications
Scientific paper
2011-11-03
Statistics
Applications
Invited talk at SCMA V, Penn State University, June 2011, PA. To appear in the Proceedings of "Statistical Challenges in Moder
Scientific paper
Many estimation problems in astrophysics are highly complex, with high-dimensional, non-standard data objects (e.g., images, spectra, entire distributions, etc.) that are not amenable to formal statistical analysis. To utilize such data and make accurate inferences, it is crucial to transform the data into a simpler, reduced form. Spectral kernel methods are non-linear data transformation methods that efficiently reveal the underlying geometry of observable data. Here we focus on one particular technique: diffusion maps or more generally spectral connectivity analysis (SCA). We give examples of applications in astronomy; e.g., photometric redshift estimation, prototype selection for estimation of star formation history, and supernova light curve classification. We outline some computational and statistical challenges that remain, and we discuss some promising future directions for astronomy and data mining.
Freeman Peter E.
Lee Ann B.
No associations
LandOfFree
Exploiting Non-Linear Structure in Astronomical Data for Improved Statistical Inference does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Exploiting Non-Linear Structure in Astronomical Data for Improved Statistical Inference, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exploiting Non-Linear Structure in Astronomical Data for Improved Statistical Inference will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-703244