Computer Science – Performance
Scientific paper
Sep 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006spie.6304e..21b&link_type=abstract
Free-Space Laser Communications VI. Edited by Majumdar, Arun K.; Davis, Christopher C.. Proceedings of the SPIE, Volume 6304, p
Computer Science
Performance
4
Scientific paper
We investigated the spatial structure of atmospheric turbulence at Maui Space Surveillance Site (MSSS) using a 3.6 m telescope and a spatial filtering receiver. This receiver simultaneously records four star images on one camera frame. The star images are formed through pupil masks representing aperture diameters of 0.1 m, 0.5m, 1.5 m, and 3.6 m. We determined the camera orientation for each data set by moving the telescope at a given angle in azimuth and elevation. We calculated the horizontal and vertical components of the image centroid and evaluated the statistics of the horizontal and vertical wavefront tilt as a function of the aperture diameter and seeing conditions. We found several evidences of anisotropy of turbulence at MSSS. On four nights we observed that the variance of on-axis horizontal tilt exceeded the variance of the vertical tilt by a factor of 1.3-3.3. We believe that this is due to anisotropy of large-scale turbulence, where the horizontal scale of the turbulent inhomogeneities exceeds their vertical scale. The estimates of the horizontal and vertical turbulence outer scale confirmed this conclusion. In addition, in several data sets the horizontal image spot diameter of the long-exposure star image exceeded the vertical image spot diameter. We also found that large apertures are more likely to have higher anisotropy coefficient values than small apertures. This is because the contribution of small-scale isotropic turbulence to the image centroid reduces with increasing telescope diameter. In the case of isotropic turbulence, the power spectral densities (PSDs) of wavefront tilt are consistent with theoretical models. The telescope vibration modes were observed at 20 Hz. In the case of anisotropic turbulence, the PSDs of the horizontal tilt component have lower slope in the high frequency range, and difference between PSDs for large and small apertures is reduced. The anisotropy of turbulence and atmospheric tilt may affect the design and performance analysis of both active and passive optical systems.
Belen'kii Mikhail S.
Cuellar Edward
Hughes Kevin A.
Rye Vincent A.
No associations
LandOfFree
Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS) will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1100078