Computer Science
Scientific paper
Feb 1981
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1981gecoa..45..135s&link_type=abstract
Geochimica et Cosmochimica Acta, vol. 45, Issue 2, pp.135-147
Computer Science
19
Scientific paper
Seawater and NaCl solutions were reacted with basalt (basalt glass and diabase) for several months at 300°C, 500 bars and a water/rock ratio of 10. During reaction, seawater was significantly modified, increasing in Ca, H 2 S, CO 2 . SiO 2 , K. Fe, Mn. Ba, Al and H + , and decreasing in Mg and SO 4 . Basalt glass was completely replaced by smectite, wairakite, anhydrite and hematite, and diabase was partially replaced by mixed layered smectite-chlorite, anhydrite and magnetite (?). Diabase was altered more slowly than basalt glass and the corresponding changes in seawater chemistry were less pronounced. Basalt glass reacted with a 0.45 m NaCl solution resulted in the formation of smectite, albite. truscottite and wairakite. Solutions from this experiment were characterized by a relatively high pH and dominated by Ca for Na exchange reactions. At no point in this experiment were heavy metals solubilized, in contrast to the seawater experiments. This behavior illustrates the fundamental importance of seawater chemistry to heavy-metal solubility; that is, the removal of Mg from seawater generates acidity which maintains heavy metals in solution. Apparently seawater chlorinity is not capable of enhancing heavy-metal solubility by chloride complexing. Seafloor heavy-metal deposits can result from the following: 1. (a) Seawater-basalt interaction at moderate temperature (~-300°C and high effective water/rock ratios; or 2. (b) at relatively high temperatures (~-400°C) and low (e.g.< 10) water/rock ratios.
Bischoff L. Jr. J.
Seyfried William E. Jr.
No associations
LandOfFree
Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1407722