Mathematics – Algebraic Geometry
Scientific paper
2012-02-22
Mathematics
Algebraic Geometry
21 pages
Scientific paper
We produce new examples supporting the Mond conjecture which can be stated as follows. The number of parameters needed for a miniversal unfolding of a finitely determined map-germ from $n$-space to $(n+1)$-space is less than (or equal to if the map-germ is weighted homogeneous) the rank of the $n$th homology group of the image of a stable perturbation of the map-germ. In this paper, we give the first examples of finitely determined map-germs of corank 2 from 3-space to 4-space satisfying the conjecture. We introduce a method for generating series of finitely determined map-germs in dimensions $(n,n+1)$ from a given finitely determined map-germ in dimensions $(n-1,n)$. We present more examples in the dimensions $(4,5)$ and $(5,6)$, and verify the conjecture for them.
No associations
LandOfFree
Examples of finitely determined map-germs of corank 2 from $n$-space to $(n+1)$-space does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Examples of finitely determined map-germs of corank 2 from $n$-space to $(n+1)$-space, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Examples of finitely determined map-germs of corank 2 from $n$-space to $(n+1)$-space will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-416664