Computer Science – Computational Geometry
Scientific paper
2000-07-13
Computer Science
Computational Geometry
54 pages, 33 figures
Scientific paper
We investigate how to make the surface of a convex polyhedron (a polytope) by folding up a polygon and gluing its perimeter shut, and the reverse process of cutting open a polytope and unfolding it to a polygon. We explore basic enumeration questions in both directions: Given a polygon, how many foldings are there? Given a polytope, how many unfoldings are there to simple polygons? Throughout we give special attention to convex polygons, and to regular polygons. We show that every convex polygon folds to an infinite number of distinct polytopes, but that their number of combinatorially distinct gluings is polynomial. There are, however, simple polygons with an exponential number of distinct gluings. In the reverse direction, we show that there are polytopes with an exponential number of distinct cuttings that lead to simple unfoldings. We establish necessary conditions for a polytope to have convex unfoldings, implying, for example, that among the Platonic solids, only the tetrahedron has a convex unfolding. We provide an inventory of the polytopes that may unfold to regular polygons, showing that, for n>6, there is essentially only one class of such polytopes.
Demaine Erik D.
Demaine Martin L.
Lubiw Anna
O'Rourke Joseph
No associations
LandOfFree
Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-415547