Computer Science – Information Theory
Scientific paper
2011-09-08
Computer Science
Information Theory
Submitted to Journal of Machine Learning Research
Scientific paper
In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed Low-Rank Representation (LRR), which seeks the lowest-rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.
Liu Guangcan
Xu Huan
Yan Shuicheng
No associations
LandOfFree
Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-474947