Ewens measures on compact groups and hypergeometric kernels

Mathematics – Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

New version of the previous paper "Hua-Pickrell measures on general compact groups". The article has been completely re-writte

Scientific paper

On unitary compact groups the decomposition of a generic element into product of reflections induces a decomposition of the characteristic polynomial into a product of factors. When the group is equipped with the Haar probability measure, these factors become independent random variables with explicit distributions. Beyond the known results on the orthogonal and unitary groups (O(n) and U(n)), we treat the symplectic case. In U(n), this induces a family of probability changes analogous to the biassing in the Ewens sampling formula known for the symmetric group. Then we study the spectral properties of these measures, connected to the pure Fisher-Hartvig symbol on the unit circle. The associated orthogonal polynomials give rise, as $n$ tends to infinity to a limit kernel at the singularity.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Ewens measures on compact groups and hypergeometric kernels does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Ewens measures on compact groups and hypergeometric kernels, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ewens measures on compact groups and hypergeometric kernels will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-91306

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.