Statistics – Applications
Scientific paper
2011-08-02
Annals of Applied Statistics 2012, Vol. 6, No. 1, 304-333
Statistics
Applications
Published in at http://dx.doi.org/10.1214/11-AOAS498 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Ins
Scientific paper
10.1214/11-AOAS498
To analyze and project age-specific mortality or morbidity rates age-period-cohort (APC) models are very popular. Bayesian approaches facilitate estimation and improve predictions by assigning smoothing priors to age, period and cohort effects. Adjustments for overdispersion are straightforward using additional random effects. When rates are further stratified, for example, by countries, multivariate APC models can be used, where differences of stratum-specific effects are interpretable as log relative risks. Here, we incorporate correlated stratum-specific smoothing priors and correlated overdispersion parameters into the multivariate APC model, and use Markov chain Monte Carlo and integrated nested Laplace approximations for inference. Compared to a model without correlation, the new approach may lead to more precise relative risk estimates, as shown in an application to chronic obstructive pulmonary disease mortality in three regions of England and Wales. Furthermore, the imputation of missing data for one particular stratum may be improved, since the new approach takes advantage of the remaining strata if the corresponding observations are available there. This is shown in an application to female mortality in Denmark, Sweden and Norway from the 20th century, where we treat for each country in turn either the first or second half of the observations as missing and then impute the omitted data. The projections are compared to those obtained from a univariate APC model and an extended Lee--Carter demographic forecasting approach using the proper Dawid--Sebastiani scoring rule.
Held Leonhard
Riebler Andrea
Rue Håvard
No associations
LandOfFree
Estimation and extrapolation of time trends in registry data---Borrowing strength from related populations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Estimation and extrapolation of time trends in registry data---Borrowing strength from related populations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Estimation and extrapolation of time trends in registry data---Borrowing strength from related populations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-510340