Error Exponents of Erasure/List Decoding Revisited via Moments of Distance Enumerators

Computer Science – Information Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

24 pages; submitted to the IEEE Transactions on Information Theory

Scientific paper

The analysis of random coding error exponents pertaining to erasure/list decoding, due to Forney, is revisited. Instead of using Jensen's inequality as well as some other inequalities in the derivation, we demonstrate that an exponentially tight analysis can be carried out by assessing the relevant moments of a certain distance enumerator. The resulting bound has the following advantages: (i) it is at least as tight as Forney's bound, (ii) under certain symmetry conditions associated with the channel and the random coding distribution, it is simpler than Forney's bound in the sense that it involves an optimization over one parameter only (rather than two), and (iii) in certain special cases, like the binary symmetric channel (BSC), the optimum value of this parameter can be found in closed form, and so, there is no need to conduct a numerical search. We have not found yet, however, a numerical example where this new bound is strictly better than Forney's bound. This may provide an additional evidence to support Forney's conjecture that his bound is tight for the average code. We believe that the technique we suggest in this paper can be useful in simplifying, and hopefully also improving, exponential error bounds in other problem settings as well.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Error Exponents of Erasure/List Decoding Revisited via Moments of Distance Enumerators does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Error Exponents of Erasure/List Decoding Revisited via Moments of Distance Enumerators, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Error Exponents of Erasure/List Decoding Revisited via Moments of Distance Enumerators will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-3191

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.