Computer Science – Information Theory
Scientific paper
2008-11-27
Computer Science
Information Theory
40 pages, 9 figures, Submitted to to IEEE Transactions on Information Theory
Scientific paper
This paper presents an analytical characterization of the ergodic capacity of amplify-and-forward (AF) MIMO dual-hop relay channels, assuming that the channel state information is available at the destination terminal only. In contrast to prior results, our expressions apply for arbitrary numbers of antennas and arbitrary relay configurations. We derive an expression for the exact ergodic capacity, simplified closed-form expressions for the high SNR regime, and tight closed-form upper and lower bounds. These results are made possible to employing recent tools from finite-dimensional random matrix theory to derive new closed-form expressions for various statistical properties of the equivalent AF MIMO dual-hop relay channel, such as the distribution of an unordered eigenvalue and certain random determinant properties. Based on the analytical capacity expressions, we investigate the impact of the system and channel characteristics, such as the antenna configuration and the relay power gain. We also demonstrate a number of interesting relationships between the dual-hop AF MIMO relay channel and conventional point-to-point MIMO channels in various asymptotic regimes.
Jin Shi
McKay Matthew R.
Wong Kai-Kit
Zhong Caijun
No associations
LandOfFree
Ergodic Capacity Analysis of Amplify-and-Forward MIMO Dual-Hop Systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ergodic Capacity Analysis of Amplify-and-Forward MIMO Dual-Hop Systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ergodic Capacity Analysis of Amplify-and-Forward MIMO Dual-Hop Systems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-232897