Mathematics – Algebraic Geometry
Scientific paper
1996-03-07
Mathematics
Algebraic Geometry
LaTex. 49pages. This paper subsumes our previous preprint "Equivariant Chow groups and the Bott residue formula", alg-geom/950
Scientific paper
In this paper we develop an equivariant intersection theory for actions of algebraic groups on algebraic schemes. The theory is based on our construction of equivariant Chow groups. They are algebraic analogues of equivariant cohomology groups which satsify the formal properties of ordinary Chow groups. In addition, they enjoy many of the properties of equivariant cohomology. The principal results are: (1) We prove the existence of canonical intersection products on the Chow groups of geometric quotients of smooth varieties- even when the stabilizers of geometric points are non-reduced. (2) We construct a Todd class map from equivariant $K$-theory of coherent sheaves to a completion of equivariant Chow groups, and prove that a completion of equivariant $K$-theory is isomorphic to the completion of equivariant Chow groups. (3) We prove a localization theorem for torus actions and use it to give a characteristic free proof of the Bott residue formula for actions of tori on complete smooth varieties.
Edidin Dan
Graham William
No associations
LandOfFree
Equivariant intersection theory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Equivariant intersection theory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Equivariant intersection theory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-28398