Equilibrium interface segregation in the diopside forsterite system I: Analytical techniques, thermodynamics, and segregation characteristics

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

10

Scientific paper

After syntheses of partially molten diopside forsterite polycrystalline aggregates doped with various solutes, we analyzed the equilibrium segregation of Ni, Mn, Sr, Al, Yb, Y, Nd, La, and Ti at interfaces between diopside/diopside, diopside/forsterite and, forsterite/forsterite grains based on STEM/EDX (scanning transmission electron microscopy/energy dispersive X-ray spectrometry) to examine the effects of ionic size, valence state, co-segregation, and interface type on interface chemistry. We derive relationships between two quantities describing interface segregation and X-ray intensities acquired both from areas that include an interface and from areas that do not. These segregation quantities are (i) interface excess density and (ii) interface enrichment factor, which rely on Gibbsian thermodynamics and the Langmuir McLean segregation model, respectively. Interface excess densities, which vary from -0.5 to 10 atoms/nm2, indicate that the level of interface excess density depends on solutes and sample assemblage. Interface enrichment factors, which range from almost 1 to 130, reveal that the ionic size of the solutes affects their segregation via production of misfit lattice strain due to the difference between the size of a solute ion and that of the ideal strain-free lattice site. The ionic sizes of Yb and Y are almost identical to the size of the strain-free site; however, their segregation is significant indicating that a difference in valence state between the host elements (i.e., Ca and Mg) and the solutes also drives segregation. In contrast to other solutes, segregation characteristics of Al differ from these simple segregation rules. Segregation quantities do not change with interface type, indicating that the number of sites available for segregants and the driving force for segregation are similar among type of interfaces. We compare the element partitioning between diopside-melt and diopside-interfaces within the same sample assemblages. These two partition coefficients coincide if we approximate the number of segregation sites at interfaces as equivalent to 2 mono-atomic layers. Examination of the energetics in crystal-melt partitioning reveals that the interface segregation energy is essentially equal to the solute solution energy in a crystal.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Equilibrium interface segregation in the diopside forsterite system I: Analytical techniques, thermodynamics, and segregation characteristics does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Equilibrium interface segregation in the diopside forsterite system I: Analytical techniques, thermodynamics, and segregation characteristics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Equilibrium interface segregation in the diopside forsterite system I: Analytical techniques, thermodynamics, and segregation characteristics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-860925

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.