Epidemics and vaccination on weighted graphs

Mathematics – Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

A Reed-Frost epidemic with inhomogeneous infection probabilities on a graph with prescribed degree distribution is studied. Each edge $(u,v)$ in the graph is equipped with two weights $W_{(u,v)}$ and $W_{(v,u)}$ that represent the (subjective) strength of the connection and determine the probability that $u$ infects $v$ in case $u$ is infected and vice versa. Expressions for the epidemic threshold are derived for i.i.d.\ weights and for weights that are functions of the degrees. For i.i.d.\ weights, a variation of the so called acquaintance vaccination strategy is analyzed where vertices are chosen randomly and neighbors of these vertices with large edge weights are vaccinated. This strategy is shown to outperform the strategy where the neighbors are chosen randomly in the sense that the basic reproduction number is smaller for a given vaccination coverage.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Epidemics and vaccination on weighted graphs does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Epidemics and vaccination on weighted graphs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Epidemics and vaccination on weighted graphs will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-19381

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.