Computer Science – Information Theory
Scientific paper
2009-01-19
Computer Science
Information Theory
Scientific paper
Algorithmic entropy and Shannon entropy are two conceptually different information measures, as the former is based on size of programs and the later in probability distributions. However, it is known that, for any recursive probability distribution, the expected value of algorithmic entropy equals its Shannon entropy, up to a constant that depends only on the distribution. We study if a similar relationship holds for R\'{e}nyi and Tsallis entropies of order $\alpha$, showing that it only holds for R\'{e}nyi and Tsallis entropies of order 1 (i.e., for Shannon entropy). Regarding a time bounded analogue relationship, we show that, for distributions such that the cumulative probability distribution is computable in time $t(n)$, the expected value of time-bounded algorithmic entropy (where the alloted time is $nt(n)\log (nt(n))$) is in the same range as the unbounded version. So, for these distributions, Shannon entropy captures the notion of computationally accessible information. We prove that, for universal time-bounded distribution $\m^t(x)$, Tsallis and R\'{e}nyi entropies converge if and only if $\alpha$ is greater than 1.
Antunes Luis
Matos Armando
Souto Andre
Teixeira Andreia
No associations
LandOfFree
Entropy Measures vs. Algorithmic Information does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Entropy Measures vs. Algorithmic Information, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Entropy Measures vs. Algorithmic Information will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-567054