Mathematics – Analysis of PDEs
Scientific paper
2008-11-30
Commun. Math. Phys. vol. 293, 519-543 (2010)
Mathematics
Analysis of PDEs
29 pages, 3 figures, Comm. Math. Phys., in press
Scientific paper
10.1007/s00220-009-0916-z
We consider a modification of the three-dimensional Navier--Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as $\ue ^{|k|/\kd}$ at high wavenumbers $|k|$. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than $\ue ^{-C(k/\kd) \ln (|k|/\kd)}$ for any $C<1/(2\ln 2)$. The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with $C= C_\star =1/\ln2$. The same behavior with a universal constant $C_\star$ is conjectured for the Navier--Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier--Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.
Bardos Claude
Frisch Uriel
Pauls Walter
Sankar Ray Samriddhi
Titi Edriss S.
No associations
LandOfFree
Entire solutions of hydrodynamical equations with exponential dissipation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Entire solutions of hydrodynamical equations with exponential dissipation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Entire solutions of hydrodynamical equations with exponential dissipation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-54826