Energy and momentum in general relativity

Mathematics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7

Scientific paper

In general relativity, conservation of energy and momentum is expressed by an equation of the form∂? μν/∂xν= 0, where ? μν≡√-gTμν represents the total energy, momentum, and stress. This equation arises from the divergence formulamathop{{int int int}mkern-31.2mu bigodot} {} ∐μν dV v = ? ? (∐μν/∂x v )d 4 d. Here we show that this formula fails to account properly for the system of basis vectors eμ(x). We obtain the (invariant) divergence formulamathop{{int int int}mkern-31.2mu bigodot} {} e μ ?μν dV v = ? ? e μ(∂?μν/∂x v + Γ{/νλ μ} ?νλ)d 4 d. Conservation of energy and momentum is therefore expressed by the covariant equation (∂?μν/∂x v ) + Γ{/νλ μ} ?νλ = 0. We go on to calculate the variation of the action under uniform displacements in space-time. This calculation yields the covariant equation of conservation, as well as the fully symmetric energy tensor? μν. Finally, we discuss the transfer of energy and momentum, within the context of Einstein's theory of gravitation.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Energy and momentum in general relativity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Energy and momentum in general relativity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy and momentum in general relativity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1874472

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.