Embedding spacetime via a geodesically equivalent metric of Euclidean signature

Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

28 pages, 17 figures. As compared to the published version there are corrections to Eqs. 46-49 (no impact on the discussion) a

Scientific paper

10.1023/A:1012037418513

Starting from the equations of motion in a 1 + 1 static, diagonal, Lorentzian spacetime, such as the Schwarzschild radial line element, I find another metric, but with Euclidean signature, which produces the same geodesics x(t). This geodesically equivalent, or dual, metric can be embedded in ordinary Euclidean space. On the embedded surface freely falling particles move on the shortest path. Thus one can visualize how acceleration in a gravitational field is explained by particles moving freely in a curved spacetime. Freedom in the dual metric allows us to display, with substantial curvature, even the weak gravity of our Earth. This may provide a nice pedagogical tool for elementary lectures on general relativity. I also study extensions of the dual metric scheme to higher dimensions. In an addendum I extend the analysis concerning the shape of an embedding of the dual spacetime of a line through a planet of constant proper density.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Embedding spacetime via a geodesically equivalent metric of Euclidean signature does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Embedding spacetime via a geodesically equivalent metric of Euclidean signature, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Embedding spacetime via a geodesically equivalent metric of Euclidean signature will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-6111

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.