Embedded Cobordism Categories and Spaces of Manifolds

Mathematics – Algebraic Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1093/imrn/rnq072

Galatius, Madsen, Tillmann and Weiss have identified the homotopy type of the classifying space of the cobordism category with objects (d-1)-dimensional manifolds embedded in R^\infty. In this paper we apply the techniques of spaces of manifolds, as developed by the author and Galatius, to identify the homotopy type of the cobordism category with objects (d-1)-dimensional submanifolds of a fixed background manifold M. There is a description in terms of a space of sections of a bundle over M associated to its tangent bundle. This can be interpreted as a form of Poincare duality, relating a space of submanifolds of M to a space of functions on M.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Embedded Cobordism Categories and Spaces of Manifolds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Embedded Cobordism Categories and Spaces of Manifolds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Embedded Cobordism Categories and Spaces of Manifolds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-557245

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.