Nonlinear Sciences – Exactly Solvable and Integrable Systems
Scientific paper
2006-02-20
Nonlinear Sciences
Exactly Solvable and Integrable Systems
16 pages; Dedicated to the centenary of the publication of the Painleve VI equation in the Comptes Rendus de l'Academie des Sc
Scientific paper
10.1088/0305-4470/39/39/S05
We construct an elliptic generalization of the Schlesinger system (ESS) with positions of marked points on an elliptic curve and its modular parameter as independent variables (the parameters in the moduli space of the complex structure). ESS is a non-autonomous Hamiltonian system with pair-wise commuting Hamiltonians. The system is bihamiltonian with respect to the linear and the quadratic Poisson brackets. The latter are the multi-color generalization of the Sklyanin-Feigin-Odeskii classical algebras. We give the Lax form of the ESS. The Lax matrix defines a connection of a flat bundle of degree one over the elliptic curve with first order poles at the marked points. The ESS is the monodromy independence condition on the complex structure for the linear systems related to the flat bundle. The case of four points for a special initial data is reduced to the Painlev{\'e} VI equation in the form of the Zhukovsky-Volterra gyrostat, proposed in our previous paper.
Chernyakov Yu.
Levin Andrey M.
Olshanetsky M.
Zotov Alexander
No associations
LandOfFree
Elliptic Schlesinger system and Painlev{é} VI does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Elliptic Schlesinger system and Painlev{é} VI, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elliptic Schlesinger system and Painlev{é} VI will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-520861