Mathematics – Differential Geometry
Scientific paper
2009-04-08
Mathematics
Differential Geometry
Scientific paper
We give a geometric interpretation of all the $m$-th elliptic integrable systems associated to a $k'$-symmetric space $N=G/G_0$ (in the sense of C.L. Terng). It turns out that we have to introduce the integer $m_{k'}$ defined by m_{1}=0 and m_{k'}= [(k'+1)/2]. Then the general problem splits into three cases : the primitive case ($m < m_{k'}$), the determined case ($m_{k'}\leq m \leq k'-1$) and the underdetermined case ($m \geq k'$). We prove that we have an interpretation in terms of a sigma model with a Wess-Zumino term. Moreover we prove that we have a geometric interpretation in terms of twistors. See the abstract in the paper for more precisions.
No associations
LandOfFree
Elliptic Integrable Systems: a Comprehensive Geometric Interpretation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Elliptic Integrable Systems: a Comprehensive Geometric Interpretation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Elliptic Integrable Systems: a Comprehensive Geometric Interpretation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-215032