Electron Inertial Effects on Rapid Energy Redistribution at Magnetic X-points

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

30 pages, 8 figures

Scientific paper

10.1086/421062

The evolution of non-potential perturbations to a current-free magnetic X-point configuration is studied, taking into account electron inertial effects as well as resistivity. Electron inertia is shown to have a negligible effect on the evolution of the system whenever the collisionless skin depth is less than the resistive scale length. Non-potential magnetic field energy in this resistive MHD limit initially reaches equipartition with flow energy, in accordance with ideal MHD, and is then dissipated extremely rapidly, on an Alfvenic timescale that is essentially independent of Lundquist number. In agreement with resistive MHD results obtained by previous authors, the magnetic field energy and kinetic energy are then observed to decay on a longer timescale and exhibit oscillatory behavior, reflecting the existence of discrete normal modes with finite real frequency. When the collisionless skin depth exceeds the resistive scale length, the system again evolves initially according to ideal MHD. At the end of this ideal phase, the field energy decays typically on an Alfvenic timescale, while the kinetic energy (which is equally partitioned between ions and electrons in this case) is dissipated on the electron collision timescale. The oscillatory decay in the energy observed in the resistive case is absent, but short wavelength structures appear in the field and velocity profiles, suggesting the possibility of particle acceleration in oppositely-directed current channels. The model provides a possible framework for interpreting observations of energy release and particle acceleration on timescales down to less than a second in the impulsive phase of solar flares.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Electron Inertial Effects on Rapid Energy Redistribution at Magnetic X-points does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Electron Inertial Effects on Rapid Energy Redistribution at Magnetic X-points, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Electron Inertial Effects on Rapid Energy Redistribution at Magnetic X-points will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-646764

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.