Astronomy and Astrophysics – Astrophysics – General Relativity and Quantum Cosmology
Scientific paper
2009-05-14
Class.Quant.Grav.26:225009,2009
Astronomy and Astrophysics
Astrophysics
General Relativity and Quantum Cosmology
21 pages
Scientific paper
10.1088/0264-9381/26/22/225009
The possibility that Lorentz symmetry is violated in gravitational processes is relatively unconstrained by experiment, in stark contrast with the level of accuracy to which Lorentz symmetry has been confirmed in the matter sector. One model of Lorentz violation in the gravitational sector is Einstein-aether theory, in which Lorentz symmetry is broken by giving a vacuum expectation value to a dynamical vector field. In this paper we analyse the effective theory for quantised gravitational and aether perturbations. We show that this theory possesses a controlled effective expansion within dimensional regularisation, that is, for any process there are a finite number of Feynman diagrams which will contribute to a given order of accuracy. We find that there is no log-running of the two-derivative phenomenological parameters, justifying the use of experimental constraints for these parameters obtained over many orders of magnitude in energy scale. Given the stringent experimental bounds on two-derivative Lorentz-violating operators, we estimate the size of matter Lorentz-violation which arises due to loop effects. This amounts to an estimation of the natural size of coefficients for Lorentz-violating dimension-six matter operators, which in turn can be used to obtain a new bound on the two-derivative parameters of this theory.
No associations
LandOfFree
Einstein-aether as a quantum effective field theory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Einstein-aether as a quantum effective field theory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Einstein-aether as a quantum effective field theory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-523515