Eigenvalue and Dirichlet problem for fully-nonlinear operators in non smooth domains

Mathematics – Analysis of PDEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

24 pages

Scientific paper

In this paper we study the maximum principle, the existence of eigenvalue and the existence of solution for the Dirichlet problem for operators which are fully-nonlinear, elliptic but presenting some singularity or degeneracy which are similar to those of the p-Laplacian, the novelty resides in the fact that we consider the equations in bounded domains which only satisfy the exterior cone condition.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Eigenvalue and Dirichlet problem for fully-nonlinear operators in non smooth domains does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Eigenvalue and Dirichlet problem for fully-nonlinear operators in non smooth domains, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Eigenvalue and Dirichlet problem for fully-nonlinear operators in non smooth domains will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-50030

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.