Computer Science – Artificial Intelligence
Scientific paper
2012-04-22
Computer Science
Artificial Intelligence
Keywords: Data Mining; Decision Support Systems, Clinical; Electronic Health Records; Implementation; Evidence-Based Medicine;
Scientific paper
10.1016/j.hlpt.2012.03.001
Objectives: Electronic health records (EHRs) are only a first step in capturing and utilizing health-related data - the challenge is turning that data into useful information. Furthermore, EHRs are increasingly likely to include data relating to patient outcomes, functionality such as clinical decision support, and genetic information as well, and, as such, can be seen as repositories of increasingly valuable information about patients' health conditions and responses to treatment over time. Methods: We describe a case study of 423 patients treated by Centerstone within Tennessee and Indiana in which we utilized electronic health record data to generate predictive algorithms of individual patient treatment response. Multiple models were constructed using predictor variables derived from clinical, financial and geographic data. Results: For the 423 patients, 101 deteriorated, 223 improved and in 99 there was no change in clinical condition. Based on modeling of various clinical indicators at baseline, the highest accuracy in predicting individual patient response ranged from 70-72% within the models tested. In terms of individual predictors, the Centerstone Assessment of Recovery Level - Adult (CARLA) baseline score was most significant in predicting outcome over time (odds ratio 4.1 + 2.27). Other variables with consistently significant impact on outcome included payer, diagnostic category, location and provision of case management services. Conclusions: This approach represents a promising avenue toward reducing the current gap between research and practice across healthcare, developing data-driven clinical decision support based on real-world populations, and serving as a component of embedded clinical artificial intelligences that "learn" over time.
Bennett Casey
Doub Tom
Selove Rebecca
No associations
LandOfFree
EHRs Connect Research and Practice: Where Predictive Modeling, Artificial Intelligence, and Clinical Decision Support Intersect does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with EHRs Connect Research and Practice: Where Predictive Modeling, Artificial Intelligence, and Clinical Decision Support Intersect, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and EHRs Connect Research and Practice: Where Predictive Modeling, Artificial Intelligence, and Clinical Decision Support Intersect will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-523108