Other
Scientific paper
Dec 2001
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2001ep%26s...53.1121o&link_type=abstract
Earth, Planets and Space, Volume 53, p. 1121-1135.
Other
10
Scientific paper
We investigate the effects of the ocean function on predictions of the sea-level changes and other geophysical signals due to glacial rebound. To precisely predict these signals, a realistic ocean function including the effects of the palaeotopography, the distribution of ice sheet and meltwater influx is required. The adoption of a precise ocean function is very important in simulating the observables in Hudson Bay for an earth model with a low lower mantle viscosity of ~1021 Pa s. In this case, the contribution from water loads can be comparable to that from ice loads. In the Fennoscandian region, however, the predictions are less sensitive to the details of the ocean function, because the width of the Gulf of Bothnia is very small compared with that of Hudson Bay. With an assumption that the ice model is represented by ARC3+ANT4b, we have examined the viscosity structure using relative sea-levels, gravity anomaly and solid surface gravity changes in North America and northern Europe. This study suggests a lower mantle viscosity of greater than 1022 Pa s and a upper mantle viscosity of (4 ~ 10) × 1020 Pa s.
Nakada Masayuki
Okuno Jun'ichi
No associations
LandOfFree
Effects of water load on geophysical signals due to glacial rebound and implications for mantle viscosity does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Effects of water load on geophysical signals due to glacial rebound and implications for mantle viscosity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Effects of water load on geophysical signals due to glacial rebound and implications for mantle viscosity will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1103111