Mathematics – Logic
Scientific paper
Jul 1995
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995e%26psl.133..449g&link_type=abstract
Earth and Planetary Science Letters, vol. 133, Issue 3-4, pp.449-461
Mathematics
Logic
13
Scientific paper
Mantle rock studies provide evidence of interaction with upwelling magmas. In orogenic lherzolites, one of the most conspicuous effects of these interactions is the development of harzburgite and dunite bands. Recent studies have suggested that these bands were formed at the expense of the host lherzolites by melt--rock reactions associated with magma percolation. In order to better understand the geochemical effects associated with percolation-reaction processes, we propose a numerical model of melt infiltration that takes into account modal variations in time and space resulting from melt--rock reactions. Melt volume variations are considered by means of porosity variations, and a local equilibrium approach is used for trace element exchange between melt and minerals. The transport of trace elements by the interstitial melt is described by a mass balance equation while the modal variations are constrained by the mineralogical trends observed in refractory peridotites massifs. The model is applied to REE, Cr and Ni in percolated peridotites affected by an olivine-forming reaction, with the aim of reproducing the evolution of these elements in refractory peridotites from the Ronda massif. Our modelling can explain the negative correlation between the LREE/HREE ratio and the HREE content and between Cr and Ni in the Ronda refractory peridotites. Our results validate the hypothesis that, in the Ronda, the bands of refractory peridotites represent porous-flow channels formed by olivine-forming melt-rock reaction, at increasing melt volume. Because similar geochemical features are observed in ophiolitic peridotites and in mantle xenoliths, it is likely that melt-rock reactions associated with magmatic infiltration are widespread and represent important mantle processes.
Bodinier Jean-Louis
Godard Marguerite
Vasseur Guy
No associations
LandOfFree
Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: A chromatographic approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: A chromatographic approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Effects of mineralogical reactions on trace element redistributions in mantle rocks during percolation processes: A chromatographic approach will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1170963