Mathematics – Commutative Algebra
Scientific paper
2008-02-22
Math. Scand. 106 (2010), no. 1, 88--98
Mathematics
Commutative Algebra
Math. Scand., to appear
Scientific paper
Let (P,<) be a finite poset and let G be its comparability graph. If cl(G) is the clutter of maximal cliques of G, we prove that cl(G) satisfies the max-flow min-cut property and that its edge ideal is normally torsion free. We prove that edge ideals of complete admissible uniform clutters are normally torsion free. The normality of a monomial ideal is expressed in terms of blocking polyhedra and the integer decomposition property. For edge ideals of clutters this property completely determine their normality
Dupont Luis A.
Villarreal Rafael H.
No associations
LandOfFree
Edge ideals of clique clutters of comparability graphs and the normality of monomial ideals does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Edge ideals of clique clutters of comparability graphs and the normality of monomial ideals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Edge ideals of clique clutters of comparability graphs and the normality of monomial ideals will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-303631