Computer Science
Scientific paper
Feb 2004
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2004m%26ps...39..247k&link_type=abstract
Meteoritics & Planetary Science, Vol. 39, No. 2, p.247-265
Computer Science
2
Scientific paper
Understanding the nature and composition of larger extraterrestrial bodies that may collide with the Earth is important. One source of information lies in the record of ancient impact craters, some of which have yielded chemical information as to the impacting body. Many deeply eroded craters have no remaining melt sheet or ejecta yet may contain impactor residue within basement fractures. The emplacement mechanism for fractionated siderophile residues is likely to be gaseous, although, melt droplets and some solid materials may survive. For breccia- and melt-filled fractures to contain extraterrestrial material, they must form very early in the impact process. Most current numerical models do not dwell on the formation and location of early major fractures, although, fractures in and around small craters on brittle glass exposed to hypervelocity impact in low Earth orbit have been successfully simulated. Modelling of fracture development associated with larger craters may help locate impact residues and test the models themselves.
Bland Phil
Graham Giles
Helps Paul
Hough Rob
Kearsley Anton
No associations
LandOfFree
Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1020993