Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters?

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2

Scientific paper

Understanding the nature and composition of larger extraterrestrial bodies that may collide with the Earth is important. One source of information lies in the record of ancient impact craters, some of which have yielded chemical information as to the impacting body. Many deeply eroded craters have no remaining melt sheet or ejecta yet may contain impactor residue within basement fractures. The emplacement mechanism for fractionated siderophile residues is likely to be gaseous, although, melt droplets and some solid materials may survive. For breccia- and melt-filled fractures to contain extraterrestrial material, they must form very early in the impact process. Most current numerical models do not dwell on the formation and location of early major fractures, although, fractures in and around small craters on brittle glass exposed to hypervelocity impact in low Earth orbit have been successfully simulated. Modelling of fracture development associated with larger craters may help locate impact residues and test the models themselves.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters? will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1020993

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.