Astronomy and Astrophysics – Astrophysics
Scientific paper
Feb 2011
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011a%26a...526a..57f&link_type=abstract
Astronomy and Astrophysics, Volume 526, id.A57
Astronomy and Astrophysics
Astrophysics
9
Gamma Rays: Stars, X-Rays: Binaries, X-Rays: Individuals: Η Carinae, X-Rays: Individuals: Fgl J1045.0-5942, Acceleration Of Particles
Scientific paper
Context. η Carinae is the colliding wind binary with the highest mass-loss rate in our Galaxy and the only one in which hard X-ray emission has been detected. Aims: η Carinae is therefore a primary candidate to search for particle acceleration by probing its gamma-ray emission. Methods: We used the first 21 months of Fermi/LAT data to extract gamma-ray (0.2-100 GeV) images, spectra, and light-curves, then combined them with multi-wavelength observations to model the non-thermal spectral energy distribution. Results: A bright gamma-ray source is detected at the position of η Carinae. Its flux at a few 100 MeV can be modelled by an extrapolation of the hard X-ray spectrum towards higher energies. The spectral energy distribution features two distinct components. The first one extends from the keV to GeV energy range, and features an exponential cutoff at ~1 GeV. It can be understood as inverse Compton scattering of ultraviolet photons by electrons accelerated up to γ ~ 104 in the colliding wind region. The expected synchrotron emission is compatible with the existing upper limit to the non-thermal radio emission. The second component is a hard gamma-ray tail detected above 20 GeV. It could be explained by π0-decay of accelerated hadrons interacting with the dense stellar wind. The ratio of the fluxes of the π0 to inverse Compton components is roughly as predicted by simulations of colliding wind binaries. This hard gamma-ray tail can only be understood if emitted close to the wind collision region. The energy transferred to the accelerated particles (~5% of the collision mechanical energy) is comparable to that of the thermal X-ray emission. Conclusions: The electron spectrum responsible for the keV to GeV emission was modelled and the observed emission above 20 GeV strongly suggests hadronic acceleration in η Carinae. These observations are thus in good agreement with the colliding wind scenario proposed for η Carinae.
Farnier Christian
Leyder Jean-Christophe
Walter Robert
No associations
LandOfFree
η Carinae: a very large hadron collider does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with η Carinae: a very large hadron collider, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and η Carinae: a very large hadron collider will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1363722