Dynamics of Microtubule Instabilities

Biology – Quantitative Biology – Quantitative Methods

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4 pages, 4 figures, for submission to JSTAT, short version of q-bio.QM/0703001. Slight revisions in response to referee commen

Scientific paper

10.1088/1742-5468/2007/05/L05004

We investigate the dynamics of an idealized model of microtubule growth that evolves by: (i) attachment of guanosine triphosphate (GTP) at rate lambda, (ii) conversion of GTP to guanosine diphosphate (GDP) at rate 1, and (iii) detachment of GDP at rate mu. As a function of these rates, a microtubule can grow steadily or its length can fluctuate wildly. For mu=0, we find the exact tubule and GTP cap length distributions, and power-law length distributions of GTP and GDP islands. For mu=infinity, we argue that the time between catastrophes, where the microtubule shrinks to zero length, scales as exp(lambda). We also find the phase boundary between a growing and shrinking microtubule.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Dynamics of Microtubule Instabilities does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Dynamics of Microtubule Instabilities, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamics of Microtubule Instabilities will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-716003

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.