Mathematics – Mathematical Physics
Scientific paper
Jun 1993
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1993tmp....95..771d&link_type=abstract
Theoretical and Mathematical Physics, Volume 95, Issue 3, pp.771-777
Mathematics
Mathematical Physics
Scientific paper
Time-dependent isotropic perturbations of the internal space S 2 are studied for a six-dimensional model with matter represented by a quantized scalar field. In the framework of “partial summation” of local vacuum corrections, an exact equation is obtained for the eigenfrequencies of the multidimensional universe. The solvability of this equation is proved numerically. Some general properties of the spectrum and details relating to the nonlocality of the vacuum are discussed. It is found that spontaneous compactification is unstable irrespective of the values of the constant of the nonminimal coupling. Direct calculations confirm the invalidity of the previously used approximation of weak nonstationarity, so we still do not yet possess a single example of semiclassically stable compactification.
No associations
LandOfFree
Dynamical perturbations of compactified space in a multidimensional model with nonlocal vacuum corrections does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dynamical perturbations of compactified space in a multidimensional model with nonlocal vacuum corrections, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamical perturbations of compactified space in a multidimensional model with nonlocal vacuum corrections will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1336568