Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2011-07-15
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
35 pages, 7 figures, accepted to ApJ
Scientific paper
Core-accretion planet formation begins in protoplanetary disks with the growth of small, ISM dust grains into larger particles. The progress of grain growth, which can be quantified using 10 micron silicate spectroscopy, has broad implications for the final products of planet formation. Previous studies have attempted to correlate stellar and disk properties with the 10 micron silicate feature in an effort to determine which stars are efficient at grain growth. Thus far there does not appear to be a dominant correlated parameter. In this paper, we use spatially resolved adaptive optics spectroscopy of 9 T Tauri binaries as tight as 0.25" to determine if basic properties shared between binary stars, such as age, composition, and formation history, have an effect on dust grain evolution. We find with 90-95% confidence that the silicate feature equivalent widths of binaries are more similar than those of randomly paired single stars, implying that shared properties do play an important role in dust grain evolution. At lower statistical significance, we find with 82% confidence that the secondary has a more prominent silicate emission feature (i.e., smaller grains) than the primary. If confirmed by larger surveys, this would imply that spectral type and/or binarity are important factors in dust grain evolution.
Close Laird M.
Greene Thomas P.
Hinz Philip M.
Hoffmann William F.
Males Jared R.
No associations
LandOfFree
Dust Grain Evolution in Spatially Resolved T Tauri Binaries does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dust Grain Evolution in Spatially Resolved T Tauri Binaries, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dust Grain Evolution in Spatially Resolved T Tauri Binaries will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-549419