Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2009-09-03
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
15 pages, 13 figures, accepted by ApJ
Scientific paper
We present 3-D models of dust distribution around beta Pictoris that produce the best fits to the Hubble Space Telescope Advanced Camera for Surveys' (HST/ACS) images obtained by Golimowski and co-workers. We allow for the presence of either one or two separate axisymmetric dust disks. The density models are analytical, radial two-power-laws joined smoothly at a cross-over radius with density exponentially decreasing away from the mid-plane of the disks. Two-disk models match the data best, yielding a reduced chi^2 of ~1.2. Our two-disk model reproduces many of the asymmetries reported in the literature and suggests that it is the secondary (tilted) disk which is largely responsible for them. Our model suggests that the secondary disk is not constrained to the inner regions of the system (extending out to at least 250 AU) and that it has a slightly larger total area of dust than the primary, as a result of slower fall-off of density with radius and height. This surprising result raises many questions about the origin and dynamics of such a pair of disks. The disks overlap, but can coexist owing to their low optical depths and therefore long mean collision times. We find that the two disks have dust replenishment times on the order of 10^4 yr at ~100 AU, hinting at the presence of planetesimals that are responsible for the production of 2nd generation dust. A plausible conjecture, which needs to be confirmed by physical modeling of the collisional dynamics of bodies in the disks, is that the two observed disks are derived from underlying planetesimal disks; such disks would be anchored by the gravitational influence of planets located at less than 70 AU from beta Pic that are themselves in slightly inclined orbits.
Ahmic Mirza
Artymowicz Pawel
Croll Bryce
No associations
LandOfFree
Dust Distribution in the beta Pictoris Circumstellar Disks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dust Distribution in the beta Pictoris Circumstellar Disks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dust Distribution in the beta Pictoris Circumstellar Disks will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-664439