Mathematics – Algebraic Geometry
Scientific paper
2004-11-02
Annales de l'Institut Fourier 55, 1 (2005),47-75
Mathematics
Algebraic Geometry
Final version
Scientific paper
Let X be a complex analytic manifold and D \subset X a free divisor. Integrable logarithmic connections along D can be seen as locally free {\cal O}_X-modules endowed with a (left) module structure over the ring of logarithmic differential operators {\cal D}_X(\log D). In this paper we study two related results: the relationship between the duals of any integrable logarithmic connection over the base rings {\cal D}_X and {\cal D}_X(\log D), and a differential criterion for the logarithmic comparison theorem. We also generalize a formula of Esnault-Viehweg in the normal crossing case for the Verdier dual of a logarithmic de Rham complex.
Calderon-Moreno F. J.
Narváez-Macarro Luis
No associations
LandOfFree
Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-340308